GATE CE

Previous Year Paper 12 Feb, 2023 Shift 1

Civil Engineering (CE) Set 1

General Aptitude (GA)

Q. 1 - Q. 5 Carry ONE mark Each

Q.1	"I have not yet decided what I will do this evening; $\mathrm{I} ___$___ visit a friend."
(A)	mite
(B)	would
(C)	might
(D)	didn't

Q.2	Eject : Insert : : Advance : (By word meaning)
(A)	Advent
(B)	Progress
(C)	Retreat
(D)	Loan

Page 1 of 39

GATE

Civil Engineering (CE) Set 1

Q.3	In the given figure, PQRSTV is a regular hexagon with each side of length $5 \mathrm{~cm} . \mathrm{A}$ circle is drawn with its centre at V such that it passes through P. What is the area (in cm^{2}) of the shaded region? (The diagram is representative)
(A)	$\frac{25 \pi}{3}$
(B)	$\frac{20 \pi}{3}$
(D)	6π
	7π

Q.4	A duck named Donald Duck says "All ducks always lie." Based only on the information above, which one of the following statements can be logically inferred with certainty?
	(A)
Donald Duck always lies.	
(B)	Donald Duck always tells the truth.
(C)	Donald Duck's statement is true.
(D)	Donald Duck's statement is false.

Civil Engineering (CE) Set 1

Q. 6 - Q. 10 Carry TWO marks Each

Q.6	Based only on the truth of the statement 'Some humans are intelligent', which one of the following options can be logically inferred with certainty?
(A)	No human is intelligent.
(B)	All humans are intelligent.
(C)	Some non-humans are intelligent.
(D)	Some intelligent beings are humans.

Civil Engineering (CE) Set 1

Q.8	The James Webb telescope, recently launched in space, is giving humankind unprecedented access to the depths of time by imaging very old stars formed almost 13 billion years ago. Astrophysicists and cosmologists believe that this odyssey in space may even shed light on the existence of dark matter. Dark matter is supposed to interact only via the gravitational interaction and not through the electromagnetic-, the weak- or the strong-interaction. This may justify the epithet "dark" in dark matter. Based on the above paragraph, which one of the following statements is FALSE?
(A)	No other telescope has captured images of stars older than those captured by the James Webb telescope.
(B)	People other than astrophysicists and cosmologists may also believe in the existence of dark matter.
(C)	The James Webb telescope could be of use in the research on dark matter.
(D)	If dark matter was known to interact via the strong-interaction, then the epithet "dark" would be justified.

Q. 9	Let $a=30!, b=50!$, and $c=100!$. Consider the following numbers: $\log _{a} c, \quad \log _{c} a, \quad \log _{b} a, \quad \log _{a} b$ Which one of the following inequalities is CORRECT?
(A)	$\log _{c} a<\log _{b} a<\log _{a} b<\log _{a} c$
(B)	$\log _{c} a<\log _{a} b<\log _{b} a<\log _{b} c$
(C)	$\log _{c} a<\log _{b} a<\log _{a} c<\log _{a} b$
(D)	$\log _{b} a<\log _{c} a<\log _{a} b<\log _{a} c$

GATE

Civil Engineering (CE) Set 1

Q. 10	A square of side length 4 cm is given. The boundary of the shaded region is defined by one semi-circle on the top and two circular arcs at the bottom, each of radius 2 cm , as shown. The area of the shaded region is ___

GATE

Civil Engineering (CE) Set 1

Q. 11 - Q. 35 Carry ONE mark Each

Q.11	For the integral
	$I=\int_{-1}^{1} \frac{1}{x^{2}} d x$
(A)	$I=0$
(B)	$I=2$
(C)	$I=-2$
(D)	The integral does not converge

Q. 12	A hanger is made of two bars of different sizes. Each bar has a square cross-section. The hanger is loaded by three-point loads in the mid vertical plane as shown in the figure. Ignore the self-weight of the hanger. What is the maximum tensile stress in N/mm

Q.13	Creep of concrete under compression is defined as the
(A)	increase in the magnitude of strain under constant stress
(B)	increase in the magnitude of stress under constant strain
(C)	decrease in the magnitude of strain under constant stress
(D)	decrease in the magnitude of stress under constant strain
Q.14	A singly reinforced concrete beam of balanced section is made of M20 grade concrete and Fe415 grade steel bars. The magnitudes of the maximum compressive strain in concrete and the tensile strain in the bars at ultimate state under flexure, as per IS 456: 2000 are
(A)	0.0035 and 0.0038
(B)	0.0020 and 0.0018
(D)	0.0035 and 0.0041
0.0020 and 0.0031	

Q. 15	In cement concrete mix design, with the increase in water-cement ratio, which one of the following statements is TRUE?
(A)	Compressive strength decreases but workability increases
(B)	Compressive strength increases but workability decreases
(C)	Both compressive strength and workability decrease
(D)	Both compressive strength and workability increase
Q. 16	The specific gravity of a soil is 2.60 . The soil is at 50% degree of saturation with a water content of 15%. The void ratio of the soil is \qquad -.
(A)	0.35
(B)	0.78
(C)	0.87
(D)	1.28

Q.17	A group of 9 friction piles are arranged in a square grid maintaining equal spacing in all directions. Each pile is of diameter 300 mm and length 7 m . Assume that the soil is cohesionless with effective friction angle $\phi^{\prime}=32^{\circ}$. What is the center-to- center spacing of the piles (in m) for the pile group efficiency of 60% ?
(A)	0.582
(B)	0.486
(C)	0.391
(D)	0.677

Q. 18	A possible slope failure is shown in the figure. Three soil samples are taken from different locations (I, II and III) of the potential failure plane. Which is the most appropriate shear strength test for each of the sample to identify the failure mechanism? Identify the correct combination from the following options: P: Triaxial compression test Q: Triaxial extension test R: Direct shear or shear box test S: Vane shear test
(A)	I-Q, II-R, III-P
(B)	I-R, II-P, III-Q
(C)	I-S, II-Q, III-R
(D)	I-P, II-R, III-Q
Q. 19	When a supercritical stream enters a mild-sloped (M) channel section, the type of flow profile would become \qquad -.
(A)	M_{1}
(B)	M_{2}
(C)	M_{3}
(D)	M_{1} and M_{2}

Q. 20	Which one of the following statements is TRUE for Greenhouse Gas (GHG) in the atmosphere?
(A)	GHG absorbs the incoming short wavelength solar radiation to the earth surface, and allows the long wavelength radiation coming from the earth surface to pass through
(B)	GHG allows the incoming long wavelength solar radiation to pass through to the earth surface, and absorbs the short wavelength radiation coming from the earth surface
(C)	GHG allows the incoming long wavelength solar radiation to pass through to the earth surface, and allows the short wavelength radiation coming from the earth surface to pass through
(D)	GHG allows the incoming short wavelength solar radiation to pass through to the earth surface, and absorbs the long wavelength radiation coming from the earth surface
Q. 21	G_{1} and G_{2} are the slopes of the approach and departure grades of a vertical curve, respectively. Given $\left\|G_{1}\right\|<\left\|G_{2}\right\|$ and $\left\|G_{1}\right\| \neq\left\|G_{2}\right\| \neq 0$ Statement 1: $+G_{1}$ followed by $+G_{2}$ results in a sag vertical curve. Statement 2: $-G_{1}$ followed by $-G_{2}$ results in a sag vertical curve. Statement 3: $+G_{1}$ followed by $-G_{2}$ results in a crest vertical curve. Which option amongst the following is true?
(A)	Statement 1 and Statement 3 are correct; Statement 2 is wrong
(B)	Statement 1 and Statement 2 are correct; Statement 3 is wrong
(C)	Statement 1 is correct; Statement 2 and Statement 3 are wrong
(D)	Statement 2 is correct; Statement 1 and Statement 3 are wrong

Q.22	The direct and reversed zenith angles observed by a theodolite are $56^{\circ} 00^{\prime} 00^{\prime \prime}$ and $303^{\circ} 00^{\prime} 00^{\prime \prime}$, respectively. What is the vertical collimation correction?
(A)	$+1^{\circ} 00^{\prime} 00^{\prime \prime}$
(B)	$-1^{\circ} 00^{\prime} 00^{\prime \prime}$
(C)	$-0^{\circ} 30^{\prime} 00^{\prime \prime}$
(D)	$+0^{\circ} 30^{\prime} 00^{\prime \prime}$
Q.23	A student is scanning his 10 inch $\times 10$ inch certificate at 600 dots per inch (dpi) to convert it to raster. What is the percentage reduction in number of pixels if the same certificate is scanned at 300 dpi?
(A)	62
(B)	88
(C)	75
(D)	50

Civil Engineering (CE) Set 1

Q. 24	If \boldsymbol{M} is an arbitrary real $n \times n$ matrix, then which of the following matrices will have non-negative eigenvalues?
(A)	M^{2}
(B)	$\boldsymbol{M} \boldsymbol{M}^{T}$
(C)	$\boldsymbol{M}^{T} \boldsymbol{M}$
(D)	$\left(\boldsymbol{M}^{T}\right)^{2}$
Q. 25	The following function is defined over the interval $[-L, L]$: $f(x)=p x^{4}+q x^{5}$ If it is expressed as a Fourier series, $f(x)=a_{0}+\sum_{n=1}^{\infty}\left\{a_{n} \sin \left(\frac{\pi x}{L}\right)+b_{n} \cos \left(\frac{\pi x}{L}\right)\right\}$ which options amongst the following are true?
(A)	$a_{n}, n=1,2, \cdots, \infty$ depend on p
(B)	$a_{n}, n=1,2, \cdots, \infty$ depend on q
(C)	$b_{n}, n=1,2, \cdots, \infty \text { depend on } p$
(D)	$b_{n}, n=1,2, \cdots, \infty$ depend on q

Q.26

Q.27	Identify the waterborne diseases caused by viral pathogens:
(A)	Acute anterior poliomyelitis
(B)	Cholera
(C)	Infectious hepatitis
(D)	Typhoid fever
Q.28	Which of the following statements is/are TRUE for the Refuse-Derived Fuel (RDF) in the context of Municipal Solid Waste (MSW) management?
(A)	Higher Heating Value (HHV) of the unprocessed MSW is higher than the HHV of RDF processed from the same MSW
(B)	RDF can be made in the powdered form
(C)	Inorganic fraction of MSW is mostly converted to RDF
(D)	RDF cannot be used in conjunction with oil
	R
(D)	

Q.29	The probabilities of occurrences of two independent events A and B are 0.5 and 0.8, respectively. What is the probability of occurrence of at least A or B (rounded off to one decimal place)?

Q.30	In the differential equation $\frac{d y}{d x}+\alpha x y=0, \alpha$ is a positive constant. If $y=1.0$ at $x=0.0$, and $y=0.8$ at $x=1.0$, the value of α is _(rounded off to three decimal places).
	Q.31 Consider the fillet-welded lap joint shown in the figure (not to scale). The length of the weld shown is the effective length. The welded surfaces meet at right angle. The weld size is 8 mm , and the permissible stress in the weld is 120 MPa. What is the safe load P (in kN, rounded off to one decimal place) that can be transmitted by this welded joint?

Civil Engineering (CE) Set 1

Civil Engineering (CE) Set 1
Q. 36 - Q. 65 Carry TWO marks Each

Q.36	A function $f(x)$, that is smooth and convex-shaped between interval $\left(x_{l}, x_{u}\right)$ is shown in the figure. This function is observed at odd number of regularly spaced points. If the area under the function is computed numerically, then
	$f(x)$

Q.37	Consider a doubly reinforced RCC beam with the option of using either Fe250 plain bars or Fe500 deformed bars in the compression zone. The modulus of elasticity of steel is $2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$. As per IS456:2000, in which type(s) of the bars, the stress in the compression steel $\left(f_{s c}\right)$ can reach the design strength $\left(0.87 f_{y}\right)$ at the limit state of collapse?
(A)	Fe250 plain bars only
(B)	Fe500 deformed bars only
(C)	Both Fe250 plain bars and Fe500 deformed bars
(D)	Neither Fe250 plain bars nor Fe500 deformed bars
Q.38	Consider the horizontal axis passing through the centroid of the steel beam cross- section shown in the figure. What is the shape factor (rounded off to one decimal place) for the cross-section?
	1.2
(B)	1.7
(C)	1.3

Civil Engineering (CE) Set 1

Q.39	Consider the pin-jointed truss shown in the figure (not to scale). All members have the same axial rigidity, $A E$. Members QR, RS, and ST have the same length L Angles QBT, RCT, SDT are all 90°. Angles BQT, CRT, DST are all 30°. The joint T carries a vertical load P. The vertical deflection of joint T is $k \frac{P L}{A E}$. What is the value of k ?

Q. 40	With reference to the compaction test conducted on soils, which of the following is INCORRECT?
(A)	Peak point of the compaction curve gives the maximum dry unit weight and optimum moisture content
(B)	With increase in the compaction effort, the maximum dry unit weight increases
(C)	With increase in the compaction effort, the optimum moisture content decreases
(D)	Compaction curve crosses the zero-air-voids curve
Q. 41	Consider that a force P is acting on the surface of a half-space (Boussinesq's problem). The expression for the vertical stress $\left(\sigma_{z}\right)$ at any point (r, z), within the half-space is given as, $\sigma_{z}=\frac{3 P}{2 \pi} \frac{z^{3}}{\left(r^{2}+z^{2}\right)^{\frac{5}{2}}}$ where, r is the radial distance, and z is the depth with downward direction taken as positive. At any given r, there is a variation of σ_{z} along z, and at a specific z, the value of σ_{z} will be maximum. What is the locus of the maximum σ_{z} ?
(A)	$z^{2}=\frac{3}{2} r^{2}$
(B)	$z^{3}=\frac{3}{2} r^{2}$
(C)	$z^{2}=\frac{5}{2} r^{2}$
(D)	$z^{3}=\frac{5}{2} r^{2}$

Q. 42	A square footing of size $2.5 \mathrm{~m} \times 2.5 \mathrm{~m}$ is placed 1.0 m below the ground surface on a cohesionless homogeneous soil stratum. Considering that the groundwater table is located at the base of the footing, the unit weights of soil above and below the groundwater table are $18 \mathrm{kN} / \mathrm{m}^{3}$ and $20 \mathrm{kN} / \mathrm{m}^{3}$, respectively, and the bearing capacity factor N_{q} is 58, the net ultimate bearing capacity of the soil is estimated as 1706 kPa (unit weight of water $=10 \mathrm{kN} / \mathrm{m}^{3}$). Earlier, a plate load test was carried out with a circular plate of 30 cm diameter in the same foundation pit during a dry season, when the water table was located beyond the plate influence zone. Using Terzaghi's bearing capacity formulation, what is the ultimate bearing capacity (in kPa) of the plate?
(A)	110.16
(B)	61.20
(C)	204.00
(D)	163.20

Q.43	A very wide rectangular channel carries a discharge (Q) of $70 \mathrm{~m}^{3} / \mathrm{s}$ per meter width. Its bed slope changes from 0.0001 to 0.0009 at a point P , as shown in the figure (not to scale). The Manning's roughness coefficient of the channel is 0.01 . What water surface profile(s) exist(s) near the point P ?
	$\mathrm{Q}=70 \mathrm{~m}^{3} / \mathrm{s}$ per meter width

Q. 45	In the following table, identify the correct set of associations between the entries in Column-1 and Column-2.	
	Column-1	Column-2
	P: Reverse Osmosis	I: Ponding
	Q: Trickling Filter	II: Freundlich Isotherm
	R : Coagulation	III: Concentration Polarization
	S: Adsorption	IV: Charge Neutralization
(A)	P-II, Q-I, S-III	
(B)	Q-III, R-II, S-IV	
(C)	P-IV, R-I, S-II	
(D)	P-III, Q-I, R-IV	

Q. 46	A plot of speed-density relationship (linear) of two roads ($\operatorname{Road} A$ and $\operatorname{Road} B)$ is shown in the figure.
	 If the capacity of Road A is C_{A} and the capacity of Road B is C_{B}, what is $\frac{C_{A}}{C_{B}}$?
(A)	$\frac{k_{A}}{k_{B}}$
(B)	$\frac{u_{A}}{u_{B}}$
(C)	$\frac{k_{A} u_{A}}{k_{B} u_{B}}$
(D)	$\frac{k_{A} u_{B}}{k_{B} u_{A}}$

Q.47	For the matrix $[A]=\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1 \\ 3 & 1 & 2\end{array}\right]$ which of the following statements is/are TRUE? (A) The eigenvalues of $[A]^{T}$ are same as the eigenvalues of $[A]$ (B) The eigenvalues of $[A]^{-1}$ are the reciprocals of the eigenvalues of $[A]$ (D) The eigenvectors of $[A]^{T}$ are same as the eigenvectors of $[A]$ Q.48 The eigenvectors of $[A]^{-1}$ are same as the eigenvectors of $[A]$ TRUE function $f(x)=e^{x} \mid$ sin $x \mid ; ~ x \in \mathbb{R}$, which of the following statements is/are (A) The function is continuous at all x
(B)	The function is differentiable at all x
(C)	The function is periodic
(D)	The function is bounded

Civil Engineering (CE) Set 1

Q.49	Consider the beam shown in the figure (not to scale), on a hinge support at end A and a roller support at end B. The beam has a constant flexural rigidity, and is subjected to the external moments of magnitude M at one-third spans, as shown in the figure. Which of the following statements is/are TRUE?
(A)	Support reactions are zero
(B)	Shear force is zero everywhere
(C)	Bending moment is zero everywhere
(D)	Deflection is zero everywhere
Q.50	Which of the following statements is/are TRUE in relation to the Maximum Mixing Depth (or Height) ' $D_{\text {max }}$ in the atmosphere?
(A)	Dmax is always equal to the height of the layer of unstable air
(B)	Ventilation coefficient depends on $D_{\text {max }}$
(C)	A smaller $D_{\text {max }}$ will have a smaller air pollution potential if other meteorological conditions remain same
(D)	Vertical dispersion of pollutants occurs up to Dmax

Q. 52	The differential equation, $\frac{\mathrm{d} u}{\mathrm{~d} t}+2 t u^{2}=1$ is solved by employing a backward difference scheme within the finite difference framework. The value of u at the $(n-1)^{\text {th }}$ time-step, for some n, is 1.75 . The corresponding time (t) is 3.14 s . Each time step is 0.01 s long. Then, the value of $\left(u_{n}-u_{n-1}\right)$ is \qquad (round off to three decimal places).
Q. 53	The infinitesimal element shown in the figure (not to scale) represents the state of stress at a point in a body. What is the magnitude of the maximum principal stress (in $\mathrm{N} / \mathrm{mm}^{2}$, in integer) at the point? \qquad

Q. 54	An idealised bridge truss is shown in the figure. The force in Member $\mathrm{U}_{2} \mathrm{~L}_{3}$ is \qquad kN (round off to one decimal place).
Q. 55	The cross-section of a girder is shown in the figure (not to scale). The section is symmetric about a vertical axis ($\mathrm{Y}-\mathrm{Y}$). The moment of inertia of the section about the horizontal axis ($\mathrm{X}-\mathrm{X}$) passing through the centroid is \qquad cm^{4} (round off to nearest integer).

Q. 56	A soil having the average properties, bulk unit weight $=19 \mathrm{kN} / \mathrm{m}^{3}$; angle of internal friction $=25^{\circ}$ and cohesion $=15 \mathrm{kPa}$, is being formed on a rock slope existing at an inclination of 35° with the horizontal. The critical height (in m) of the soil formation up to which it would be stable without any failure is off to one decimal place). [Assume the soil is being formed parallel to the rock bedding plane and there is no ground water effect.]
Q. 57	
Q smooth vertical retaining wall supporting layered soils is shown in figure. According to Rankine's earth pressure theory, the lateral active earth pressure acting at the base of the wall is	

| Q.59 | A 12-hour storm occurs over a catchment and results in a direct runoff depth of
 100 mm . The time-distribution of the rainfall intensity is shown in the figure (not
 to scale). The ϕ-index of the storm is (in mm, rounded off to two decimal
 places) |
| :--- | :--- | :--- |
| Q. 61 | In Horton's equation fitted to the infiltration data for a soil, the initial infiltration
 capacity is $10 \mathrm{~mm} / \mathrm{h}$; final infiltration capacity is $5 \mathrm{~mm} / \mathrm{h}$; and the exponential decay
 constant is $0.5 / \mathrm{h}$. Assuming that the infiltration takes place at capacity rates, the
 total infiltration
 is |

Civil Engineering (CE) Set 1

END OF QUESTION PAPER

